Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Detecting labile heme and ferroptosis through ‘turn-on’ fluorescence and lipid droplet localization post Fe2+ sensing
 
  • Details

Detecting labile heme and ferroptosis through ‘turn-on’ fluorescence and lipid droplet localization post Fe2+ sensing

Source
Journal of Materials Chemistry B
ISSN
2050750X
Date Issued
2024-04-16
Author(s)
Dubey, Yogesh
Mansuri, Shabnam
Kanvah, Sriram  
DOI
10.1039/d4tb00353e
Volume
12
Issue
20
Abstract
Iron, a crucial biologically active ion essential for metabolic processes in living organisms, plays a vital role in biological functions, and imbalances in iron levels can lead to various diseases. In this study, we have developed two simple “turn-on” fluorescent probes, NOPy and NOCN, for the quick and selective detection of Fe<sup>2+</sup> at nanomolar levels (LOD of 35 nM), accompanied by significant absorption and emission shifts, along with colorimetric demarcation. Both fluorophores exhibit an excellent “turn-on” emission response upon encountering Fe<sup>2+</sup> in the cells. Flow cytometry and confocal fluorescence imaging studies demonstrate enhanced fluorescence signals in response to labile iron, efficiently detecting heme during erastin-induced ferroptosis. Interestingly, we also observed that the product formed after Fe<sup>2+</sup> sensing localizes within the lipid droplets. These water-soluble and highly sensitive reactive probes, NOPy and NOCN, enable investigations of iron-dependent physiological and pathological conditions. The development of these probes represents an advancement in the field, offering a rapid and selective means for detecting Fe<sup>2+</sup> with minimal cytotoxicity.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28949
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify