Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Kibble-Zurek mechanism and errors of gapped quantum phases
 
  • Details

Kibble-Zurek mechanism and errors of gapped quantum phases

Source
Physical Review B
ISSN
24699950
Date Issued
2024-07-15
Author(s)
Jamadagni, Amit
Kazemi, Javad
Bhattacharyya, Arpan  
DOI
10.1103/PhysRevB.110.045140
Volume
110
Issue
4
Abstract
Kibble-Zurek mechanism relates the domain of nonequilibrium dynamics with the critical properties at equilibrium. It establishes a power law connection between nonequilibrium defects quenched through a continuous phase transition and the quench rate via the scaling exponent. We present a novel numerical scheme to estimate the scaling exponent wherein the notion of defects is mapped to errors, previously introduced to quantify a variety of gapped quantum phases. To demonstrate the versatility of our method we conduct numerical experiments across a broad spectrum of spin-half models hosting local and symmetry protected topological order. Furthermore, an implementation of the quench dynamics featuring a topological phase transition on a digital quantum computer is proposed to quantify the associated criticality.
Publication link
http://link.aps.org/pdf/10.1103/PhysRevB.110.045140
URI
https://d8.irins.org/handle/IITG2025/28826
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify