Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Graph-based networks for accurate prediction of ground and excited state molecular properties from minimal features
 
  • Details

Graph-based networks for accurate prediction of ground and excited state molecular properties from minimal features

Source
Molecular Systems Design and Engineering
Date Issued
2024-09-25
Author(s)
Trivedi, Denish
Patrikar, Kalyani
Mondal, Anirban  
DOI
10.1039/d4me00113c
Volume
9
Issue
12
Abstract
Graph neural networks (GNN) have been demonstrated to correlate molecular structure with properties, enabling rapid evaluation of molecules for a given application. Molecular properties, including ground and excited states, are crucial to analyzing molecular behavior. However, while attention-based mechanisms and pooling methods have been optimized to accurately predict specific properties, no versatile models can predict diverse molecular properties. Here, we present graph neural networks that predict a wide range of properties with high accuracy. Model performance is high regardless of dataset size and origin. Further, we demonstrate an implementation of hierarchical pooling enabling high-accuracy prediction of excited state properties by effectively weighing aspects of features that correlate better with target properties. We show that graph attention networks consistently outperform convolution networks and linear regression, particularly for small dataset sizes. The graph attention model is more accurate than previous message-passing neural networks developed for the prediction of diverse molecular properties. Hence, the model is an efficient tool for screening and designing molecules for applications that require tuning multiple molecular properties.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28733
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify