Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. DeepPS2: Revisiting Photometric Stereo Using Two Differently Illuminated Images
 
  • Details

DeepPS2: Revisiting Photometric Stereo Using Two Differently Illuminated Images

Source
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
ISSN
03029743
Date Issued
2022-01-01
Author(s)
Tiwari, Ashish
Raman, Shanmuganathan  
DOI
10.1007/978-3-031-20071-7_8
Volume
13667 LNCS
Abstract
Estimating 3D surface normals through photometric stereo has been of great interest in computer vision research. Despite the success of existing traditional and deep learning-based methods, it is still challenging due to: (i) the requirement of three or more differently illuminated images, (ii) the inability to model unknown general reflectance, and (iii) the requirement of accurate 3D ground truth surface normals and known lighting information for training. In this work, we attempt to address an under-explored problem of photometric stereo using just two differently illuminated images, referred to as the PS2 problem. It is an intermediate case between a single image-based reconstruction method like Shape from Shading (SfS) and the traditional Photometric Stereo (PS), which requires three or more images. We propose an inverse rendering-based deep learning framework, called DeepPS2, that jointly performs surface normal, albedo, lighting estimation, and image relighting in a completely self-supervised manner with no requirement of ground truth data. We demonstrate how image relighting in conjunction with image reconstruction enhances the lighting estimation in a self-supervised setting (Supported by SERB IMPRINT 2 Grant).
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26267
Subjects
Deep learning | Image relighting | Inverse rendering | Photometric stereo
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify