Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm
 
  • Details

Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm

Source
Journal of High Energy Physics
Date Issued
2022-02-01
Author(s)
Konar, Partha
Ngairangbam, Vishal S.
Spannowsky, Michael
DOI
10.1007/JHEP02(2022)060
Volume
2022
Issue
2
Abstract
Hadronic signals of new-physics origin at the Large Hadron Collider can remain hidden within the copiously produced hadronic jets. Unveiling such signatures require highly performant deep-learning algorithms. We construct a class of Graph Neural Networks (GNN) in the message-passing formalism that makes the network output infra-red and collinear (IRC) safe, an important criterion satisfied within perturbative QCD calculations. Including IRC safety of the network output as a requirement in the construction of the GNN improves its explainability and robustness against theoretical uncertainties in the data. We generalise Energy Flow Networks (EFN), an IRC safe deep-learning algorithm on a point cloud, defining energy weighted local and global readouts on GNNs. Applying the simplest of such networks to identify top quarks, W bosons and quark/gluon jets, we find that it outperforms state-of-the-art EFNs. Additionally, we obtain a general class of graph construction algorithms that give structurally invariant graphs in the IRC limit, a necessary criterion for the IRC safety of the GNN output.
Publication link
https://link.springer.com/content/pdf/10.1007/JHEP02(2022)060.pdf
URI
https://d8.irins.org/handle/IITG2025/26189
Subjects
Jets | QCD Phenomenology
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify