Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Self-interacting freeze-in dark matter in a singlet doublet scenario
 
  • Details

Self-interacting freeze-in dark matter in a singlet doublet scenario

Source
Journal of Cosmology and Astroparticle Physics
Date Issued
2022-10-01
Author(s)
Ghosh, Purusottam
Konar, Partha
Saha, Abhijit Kumar
Show, Sudipta
DOI
10.1088/1475-7516/2022/10/017
Volume
2022
Issue
10
Abstract
We examine the non-thermal production of dark matter in a scalar extended singlet doublet fermion model where the lightest admixture of the fermions constitutes a suitable dark matter candidate. The dark sector is non-minimal with the MeV scale singlet scalar, which is stable in the Universe lifetime and can mediate the self-interaction for the multi-GeV fermion dark matter mitigating the small scale structure anomalies of the Universe. If the dark sector is strongly coupled to yield a velocity dependent large self-interaction cross section, it undergoes internal dark thermal equilibrium after freeze-in production. We essentially end up with suppressed relic abundance for the fermion dark matter in a traditional radiation dominated Universe. In contrast, the presence of a modified cosmological phase in the early era drives the fermion dark matter to satisfy nearly the whole amount of observed relic. It also turns out that the assumption of an unconventional cosmological history can allow the GeV scale dark matter to be probed at LHC from displaced vertex signature with improved sensitivity.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25918
Subjects
cosmology of theories beyond the SM | dark matter theory | particle physics - cosmology connection
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify