Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A CLASS OF IDENTITIES ASSOCIATED WITH DIRICHLET SERIES SATISFYING HECKE’S FUNCTIONAL EQUATION
 
  • Details

A CLASS OF IDENTITIES ASSOCIATED WITH DIRICHLET SERIES SATISFYING HECKE’S FUNCTIONAL EQUATION

Source
Proceedings of the American Mathematical Society
ISSN
00029939
Date Issued
2022-11-01
Author(s)
Berndt, Bruce C.
Dixit, Atul  
Gupta, Rajat
Zaharescu, Alexandru
DOI
10.1090/proc/16002
Volume
150
Issue
11
Abstract
We consider two sequences a(n) and b(n), 1 ≤ n < ∞, generated by Dirichlet series of the forms ∞ ∞ ∑ a(n) and <inf>n</inf> ∑ <inf>=1</inf> b <inf>μ</inf> (n <inf>sn</inf> ) λs n n=1 satisfying a familiar functional equation involving the gamma function Γ(s). A general identity is established. Appearing on one side is an infinite series involving a(n) and modified Bessel functions K<inf>ν</inf>, wherein on the other side is an infinite series involving b(n) that is an analogue of the Hurwitz zeta function. Six special cases, including a(n) = τ(n) and a(n) = r<inf>k</inf>(n), are examined, where τ(n) is Ramanujan’s arithmetical function and r<inf>k</inf>(n) denotes the number of representations of n as a sum of k squares. All but one of the examples appear to be new.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25892
Subjects
Bessel functions | Classical arithmetic functions | Functional equations
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify