Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Formation of Ordered Patterns in Electroresponsive Polymer Ionic Liquid Blends
 
  • Details

Formation of Ordered Patterns in Electroresponsive Polymer Ionic Liquid Blends

Source
Macromolecular Theory and Simulations
ISSN
10221344
Date Issued
2022-11-01
Author(s)
Choudhury, Ashima
Sairam, S.
Dayal, Pratyush  
DOI
10.1002/mats.202200040
Volume
31
Issue
6
Abstract
Directing reaction-diffusion (RD) phenomena, through the use of external stimuli has been one of the widely used approaches for designing multifunctional soft materials. Using modeling and simulation, it is demonstrated that the nonuniform electric field can be harnessed to create intricate ordered patterns in polymer ionic liquid (PIL) blends. The investigation begins with the establishment of the equilibrium phase diagrams of electroresponsive PIL blends and subsequently, use the Poisson–Nernst–Planck equations to model the kinetics of pattern formation. The simulations reveal that in the presence of nonuniform electric field the ionic liquid (IL) rich domains self-aggregate in high electric field regions. Thus, the ordering of the electric field regions effectively dictates the ordering of the IL-rich phase in the PIL blends. It is also demonstrated that the mechanism of spatiotemporal pattern formation is quite robust and can be dynamically controlled by varying the distribution of electric field. It is believed that the methodology provides a simplistic mechanism for creating ordered patterns in soft materials through RD phenomena that can be exploited for designing other similar stimuli-responsive systems.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25873
Subjects
electro-patterning | modeling and simulation | pattern formation | phase ordering | polymer ionic liquid blends | self-organisation
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify