Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Methacrylamide based antibiotic polymers with no detectable bacterial resistance
 
  • Details

Methacrylamide based antibiotic polymers with no detectable bacterial resistance

Source
Soft Matter
ISSN
1744683X
Date Issued
2021-03-28
Author(s)
Tyagi, Anju
Mishra, Abhijit  
DOI
10.1039/d0sm02176h
Volume
17
Issue
12
Abstract
The growing number of multidrug-resistant pathogens is a major healthcare concern. In search of alternatives to antibiotics, synthetic mimics of antimicrobial peptides (SMAMPs) in the form of antimicrobial polymers have gained tremendous attention. Here, we report the synthesis of a set of 7 amphiphilic water-soluble cationic copolymers using aminopropyl methacrylamide and benzyl methacrylamide repeat units that show significant antibacterial activity. The antibacterial activity was evaluated using a broth microdilution assay against S. aureus and E. coli, while toxicity to mammalian cells was quantified by hemolysis assay with human red blood cells (RBCs). We find that the antibacterial activity and selectivity of the polymers depends on the mole fraction of aromatic benzyl units (fbenzyl) and the average molecular weight (Mn). Polymers with fbenzyl of 0.10 and 0.19, named AB-10 and AB-19 respectively, exhibited the highest antibacterial efficacy without inducing hemolysis and were chosen for further study. Liposome dye leakage study and observations from confocal and scanning electron microscopy indicate that the AB polymers killed bacterial cells primarily by disrupting the cytoplasmic membrane. No resistant mutants of E. coli and S. aureus were obtained with AB-19 in a 30 day serial passage study.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25497
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify