Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Nonnegative solutions to reaction–diffusion system with cross-diffusion and nonstandard growth conditions
 
  • Details

Nonnegative solutions to reaction–diffusion system with cross-diffusion and nonstandard growth conditions

Source
Mathematical Methods in the Applied Sciences
ISSN
01704214
Date Issued
2020-07-15
Author(s)
Arumugam, Gurusamy
Tyagi, Jagmohan  
DOI
10.1002/mma.6401
Volume
43
Issue
10
Abstract
We establish the existence of nonnegative weak solutions to nonlinear reaction–diffusion system with cross-diffusion and nonstandard growth conditions subject to the homogeneous Neumann boundary conditions. We assume that the diffusion operators satisfy certain monotonicity condition and nonstandard growth conditions and prove that the existence of weak solutions using Galerkin's approximation technique.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/24087
Subjects
Galerkin's approximation | second-order parabolic systems | variable exponents | weak solutions
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify