Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid
 
  • Details

Ion exchange based approach for rapid and selective Pb(II) removal using iron oxide decorated metal organic framework hybrid

Source
Journal of Environmental Management
ISSN
03014797
Date Issued
2021-01-01
Author(s)
Goyal, Prateek
Tiwary, Chandra Shekhar
Misra, Superb K.  
DOI
10.1016/j.jenvman.2020.111469
Volume
277
Abstract
Polyacrylic acid capped Fe<inf>3</inf>O<inf>4</inf> – Cu-MOF (i-MOF) hybrid was prepared for rapid and selective lead removal, with 93% removal efficiency, exceptional selectivity, and adsorption capacity of 610 mg/g and 91% of i-MOF hybrid could be easily separated from the contaminated water using magnetic separation. The adsorption process followed a pseudo-second-order model and the adsorption efficiency decreased from 93% to 83% on raising the temperature from 25 °C to 40 °C. The change in equilibrium adsorption capacity with respect to equilibrium adsorbate concentration followed the Langmuir isotherm model. i-MOF had a high selectivity coefficient and removal efficiency for lead ions even when exposed simultaneously with naturally abundant cations (Na(I), Ca(II), Mg(II)). Release of Cu(II) ions from the i-MOF after Pb(II) removal suggested suggested ion-exchange to be the dominant removal mechanism. This new finding for Pb(II) removal with excellent adsorption performance using i-MOF through ion exchange based approach is a viable option for treating lead contaminated water.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23790
Subjects
Adsorption | Cu-MOF composite | Ion-exchange | Lead removal | MOF hybrid
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify