Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Distinct DNA Sequence Preference for Histone Occupancy in Primary and Transformed Cells
 
  • Details

Distinct DNA Sequence Preference for Histone Occupancy in Primary and Transformed Cells

Source
Cancer Informatics
Date Issued
2019-04-01
Author(s)
Datta, Subhamoy
Patel, Manthan
Patel, Divyesh
Singh, Umashankar  
DOI
10.1177/1176935119843835
Volume
18
Abstract
Genome-wide occupancy of several histone modifications in various cell types has been studied using chromatin immunoprecipitation (ChIP) sequencing. Histone occupancy depends on DNA sequence features like inter-strand symmetry of base composition and periodic occurrence of TT/AT. However, whether DNA sequence motifs act as an additional effector of histone occupancy is not known. We have analyzed the presence of DNA sequence motifs in publicly available ChIP-sequence datasets for different histone modifications. Our results show that DNA sequence motifs are associated with histone occupancy, some of which are different between primary and transformed cells. The motifs for primary and transformed cells showed different levels of GC-richness and proximity to transcription start sites (TSSs). The TSSs associated with transformed or primary cell-specific motifs showed different levels of TSS flank transcription in primary and transformed cells. Interestingly, TSSs with a motif-linked occupancy of H2AFZ, a component of positioned nucleosomes, showed a distinct pattern of RNA Polymerase II (POLR2A) occupancy and TSS flank transcription in primary and transformed cells. These results indicate that DNA sequence features dictate differential histone occupancy in primary and transformed cells, and the DNA sequence motifs affect transcription through regulation of histone occupancy.
Publication link
https://journals.sagepub.com/doi/pdf/10.1177/1176935119843835
URI
https://d8.irins.org/handle/IITG2025/23316
Subjects
ChIP | GC-richness | POLR2A | TSSs
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify