Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots
 
  • Details

Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots

Source
Journal of Materials Science
ISSN
00222461
Date Issued
2018-10-01
Author(s)
Kumar, Nirmal
Tiwary, C. S.
Biswas, Krishanu
DOI
10.1007/s10853-018-2485-z
Volume
53
Issue
19
Abstract
The advancement of nanotechnology demands large-scale preparation of nanocrystalline powder of innovative materials. High-entropy alloys (HEAs) exhibit unique properties: mechanical, thermal, magnetic etc., making them potentials candidates for applications in energy, environment and biomaterials etc. Thus, there is a need to develop novel synthesis methods to prepare nanocrystalline high-purity HEAs in large quantity. Conventional mechanical alloying of the multicomponent metallic powder mixture requires larger milling time and it is prone to contaminations and phase transformation. The present investigation reports a unique approach, involving casting followed by cryomilling, leading to formation of nanocrystalline HEAs powder, which are relatively contaminations free with narrow size distribution. Using examples of two FCC and one BCC single-phase HEAs, it has been shown that large-scale nanocrystalline HEAs powder can be prepared after few hours of cryomilling at 123 K. The formation of nanocrystalline HEAs during cryomilling has been discussed using theoretically available approaches.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22744
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify