Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Broadband Optical Response in Ternary Tree Fractal Plasmonic Nanoantenna
 
  • Details

Broadband Optical Response in Ternary Tree Fractal Plasmonic Nanoantenna

Source
Plasmonics
ISSN
15571955
Date Issued
2016-04-01
Author(s)
Hegde, Ravi S.  
Khoo, E. H.
DOI
10.1007/s11468-015-0059-3
Volume
11
Issue
2
Abstract
The ability to precisely tailor lineshapes, operational bandwidth, and localized electromagnetic field enhancements (“hot spots”) in nanostructures is currently of interest in advancing the performance of plasmonics-based chemical and biological sensing techniques. Fractal geometries are an intriguing alternative in the design of plasmonic nanostructures as they offer tunable multiband response spanning the visible and infrared spectral regions. A numerical study of the optical behavior of ternary tree fractal plasmonic nanoantenna is presented. Self-similar features are seen to emerge in the extinction spectra with the increase in fractal order N of the tree structure. Plasmon oscillations occurring at different length scales are shown to correspond to the multiple peaks and are compared with the spatial maps of electric field enhancement at the surface of the nanoantenna. The multiple peaks are shown to be independently tunable by structural variation. The robustness of the spectral response and polarization dependence arising due to various asymmetries is discussed.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/21924
Subjects
Fractals | Nanoantenna | Nanostructures | Surface-enhanced spectroscopy
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify