Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Positive solutions and global bifurcation of strongly coupled elliptic systems
 
  • Details

Positive solutions and global bifurcation of strongly coupled elliptic systems

Source
Electronic Journal of Differential Equations
Date Issued
2013-04-12
Author(s)
Tyagi, Jagmohan  
Volume
2013
Abstract
In this article, we study the existence of positive solutions for the coupled elliptic system -Δu = λ (f(u; v) + h1(x)) in Ω -Δv = λ (g(u; v) + h2(x)) in Ω u = v = 0 on ∂Ω; under certain conditions on f; g and allowing h1; h2 to be singular. We also consider the system -Δu = λ (a(x)u + b(x)v + f1(v) + f2(u)) in Ω -Δu = λ (b(x)u + c(x)v + g1(u) + g2(v)) in Ω; u = v = 0 on ∂Ω; and prove a Rabinowitz global bifurcation type theorem to this system. ©2013 Texas State University - San Marcos.
URI
https://d8.irins.org/handle/IITG2025/21162
Subjects
Bifurcation | Elliptic system | Positive solutions
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify