Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Computation of Gelfand-Kirillov dimension for B-type structures
 
  • Details

Computation of Gelfand-Kirillov dimension for B-type structures

Source
arXiv
Date Issued
2023-10-01
Author(s)
Bhuva, Akshay
Saurabh, Bipul
DOI
10.48550/arXiv.2310.12163
Abstract
Let O(Spinq1/2(2n+1)) and O(SOq(2n+1)) be the quantized algebras of regular functions on the Lie groups Spin(2n+1) and SO(2n+1), respectively. In this article, we prove that the Gelfand-Kirillov dimension of a simple unitarizable O(Spinq1/2(2n+1))-module VSpint,w is the same as the length of the Weyl word w. We show that the same result holds for the O(SOq(2n+1))-module Vt,w, which is obtained from VSpint,w by restricting the algebra action to the subalgebra O(SOq(2n+1)) of O(Spinq1/2(2n+1)). Moreover, we consider the quantized algebras of regular functions on certain homogeneous spaces of SO(2n+1) and Spin(2n+1) and show that its Gelfand-Kirillov dimension is equal to the dimension of the homogeneous space as a real differentiable manifold.
URI
https://d8.irins.org/handle/IITG2025/20106
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify