Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Design space and variability analysis of SOI MOSFET for ultra-low power band-to-band tunneling neurons
 
  • Details

Design space and variability analysis of SOI MOSFET for ultra-low power band-to-band tunneling neurons

Source
arXiv
Date Issued
2023-11-01
Author(s)
Sonawane, Jay
Patil, Shubham
Kadam, Abhishek
Singh, Ajay Kumar
Lashkare, Sandip
Deshpande, Veeresh
Ganguly, Udayan
DOI
10.48550/arXiv.2311.18577
Abstract
Large spiking neural networks (SNNs) require ultra-low power and low variability hardware for neuromorphic computing applications. Recently, a band-to-band tunneling-based (BTBT) integrator, enabling sub-kHz operation of neurons with area and energy efficiency, was proposed. For an ultra-low power implementation of such neurons, a very low BTBT current is needed, so minimizing current without degrading neuronal properties is essential. Low variability is needed in the ultra-low current integrator to avoid network performance degradation in a large BTBT neuron-based SNN. To address this, we conducted design space and variability analysis in TCAD, utilizing a well-calibrated TCAD deck with experimental data from GlobalFoundries 32nm PD-SOI MOSFET. First, we discuss the physics-based explanation of the tunneling mechanism. Second, we explore the impact of device design parameters on SOI MOSFET performance, highlighting parameter sensitivities to tunneling current. With device parameters' optimization, we demonstrate a ~20x reduction in BTBT current compared to the experimental data. Finally, a variability analysis that includes the effects of random dopant fluctuations (RDF), oxide thickness variability (OTV), and channel-oxide interface traps DIT in the BTBT, SS, and ON regimes of operation is shown. The BTBT regime shows high sensitivity to the RDF and OTV as any variation in them directly modulates the tunnel length or the electric field at the drain-channel junction, whereas minimal sensitivity to DIT is observed.
URI
https://d8.irins.org/handle/IITG2025/19979
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify