Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A general theory of ignition and combustion of nano- and micron-sized aluminum particles
 
  • Details

A general theory of ignition and combustion of nano- and micron-sized aluminum particles

Source
COMBUSTION AND FLAME
ISSN
0010-2180
Date Issued
2016-07-01
Author(s)
Sundaram, Dilip Srinivas
Puri, Puneesh
Yang, Vigor
DOI
10.1016/j.combustflame.2016.04.005
Volume
169
Abstract
A general theory of ignition and combustion of nano- and micron-sized aluminum particles is developed. The oxidation process is divided into several stages based on phase transformations and chemical reactions. Characteristic time scales of different processes are compared to identify physicochemical phenomena in each stage. In the first stage, the particle is heated to the melting temperature of the aluminum core. Key processes are heat and mass transfer between the gas and particle surface and diffusion of mass and energy inside the particle. The second stage begins upon melting of the aluminum core. Melting results in pressure buildup, thereby facilitating mass diffusion and/or cracking of the oxide layer. Melting is followed by polymorphic phase transformations, which also results in the formation of openings in the oxide layer. These provide pathways for the molten aluminum to react with the oxidizing gas; the ensuing energy release results in ignition of nano-aluminum particles. For large micron-sized particles, ignition is not achieved due to their greater volumetric heat capacity. In the third stage, nanoparticles undergo vigorous self-sustaining reactions with the oxidizing gas. Reactions typically occur heterogeneously in the particle and the burning rate is controlled by chemical kinetics. For large micron-sized particles, polymorphic phase transformations result in the formation of a crystalline oxide layer. The oxide layer melts and particle ignition is achieved. In the fourth stage, the large micron-sized particle burns through gas-phase or surface reactions, depending on the oxidizer and pressure. The burning rate is controlled by mass diffusion through the gas-phase mixture. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Unpaywall
Sherpa Url
https://v2.sherpa.ac.uk/id/publication/16863
URI
https://d8.irins.org/handle/IITG2025/19390
Subjects
Thermodynamics
Energy & Fuels
Engineering
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify