A comprehensive review on MEMS-based viscometers
Source
SENSORS AND ACTUATORS A-PHYSICAL
ISSN
0924-4247
Date Issued
2022-05-01
Author(s)
Singh, Parul
Sharma, Kanhaya
Puchades, Ivan
Agarwal, Pankaj B.
Abstract
Viscosity is an important rheological parameter, which needs to be measured accurately in various industrial applications to improve the quality of the product. Micro-electro-mechanical system (MEMS)-based microfluidic viscometers are nowadays overpowering conventional types of viscometers due to many advantages such as compatibility for both Newtonian and non-Newtonian fluids, small size, higher shear rates, no solvent evaporation, small sample size requirement (in micro and nano-litres), and better accuracy. This paper summarizes a comprehensive review on the state-of-the-art of MEMS-based technologies combined with microfluidics for realizing the viscometers to determine various fluidic parameters, important for applications in different fields like biopharmaceuticals and protein therapeutics, lubricants/adhesives, healthcare, food industries, cosmetics, concrete, paints, fuel and petroleum industries, etc. This review covers the basic sensing principles of various types of MEMS-based technologies useful for viscometer applications, such as pressure, diaphragm, viscometer/ rheometer on a chip (VROC), acoustic, cantilever etc. Limitations of different types of commonly available tabletop viscometers are outlined. Considering the present and future applications of MEMS-based viscometers, their role in industrial applications are also discussed in detail.
Unpaywall
Subjects
Engineering
Instruments & Instrumentation
