Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses
 
  • Details

Dynamical attributes of nanocatalyzed self-oscillating reactions via bifurcation analyses

Source
Journal of Chemical Physics
ISSN
00219606
Date Issued
2021-08-14
Author(s)
Rajput, Vandana
Dayal, Pratyush  
DOI
10.1063/5.0060509
Volume
155
Issue
6
Abstract
Self-oscillating chemical reactions that undergo reaction-diffusion (RD) phenomena have shown great potential for designing stimuli-responsive materials. Belousov-Zhabotinsky (BZ) reactions are one such class of reactions that exhibit nonlinear chemical oscillations due to redox cycles of the metal-ion catalyst by virtue of Hopf bifurcation. Using bifurcation analyses, here we investigate the BZ reactions, catalyzed by 0D-2D catalytic nanomats and bare nanosheets, which are known to exhibit enhanced dynamic response due to catalysts’ heterogeneity. Specifically, we incorporate the nanocatalysts’ activity in the kinetic model of the BZ reactions and, subsequently, use catalysts’ activity as the bifurcation parameter for analyses. By computing higher-order Lyapunov and frequency coefficients, we have revealed new oscillatory regimes in the bifurcation diagram, including re-entrant regions where sustained oscillations are unexpectedly suppressed, even with high catalytic activity. In addition, we also calculate the amplitude and frequency of BZ oscillations in each of these regions as a function of nanocatalysts’ activity. We believe that our current findings can be used to harness the nonlinearity of RD-based dynamical systems to provide unique functionalities to active stimuli-response systems.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25339
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify