Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Genome wide characterization and expression analysis of CrRLK1L gene family in wheat unravels their roles in development and stress-specific responses
 
  • Details

Genome wide characterization and expression analysis of CrRLK1L gene family in wheat unravels their roles in development and stress-specific responses

Source
Frontiers in Plant Science
Date Issued
2024-01-01
Author(s)
Gawande, Nilesh D.  
Sankaranarayanan, Subramanian  
DOI
10.3389/fpls.2024.1345774
Volume
15
Abstract
Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) genes encode a subfamily of receptor-like kinases (RLK) that regulate diverse processes during plant growth, development, and stress responses. The first CrRLK1L was identified from the Catharanthus roseus, commonly known as Madagascar periwinkle. Subsequently, CrRLK1L gene families have been characterized in many plants. The genome of T. aestivum encodes 15 CrRLK1L genes with 43 paralogous copies, with three homeologs each, except for -2-D and -7-A, which are absent. Chromosomal localization analysis revealed a markedly uneven distribution of CrRLK1L genes across seven different chromosomes, with chromosome 4 housing the highest number of genes, while chromosome 6 lacked any CrRLK1L genes. Tissue-specific gene expression analysis revealed distinct expression patterns among the gene family members, with certain members exhibiting increased expression in reproductive tissues. Gene expression analysis in response to various abiotic and biotic stress conditions unveiled differential regulation of gene family members. Cold stress induces CrRLK1Ls -4-B and -15-A while downregulating -3-A and -7B. Drought stress upregulates -9D, contrasting with the downregulation of -7D. CrRLK1L-15-B and -15-D were highly induced in response to 1 hr of heat, and combined drought and heat stress, whereas -10-B is downregulated. Similarly, in response to NaCl stress, only CrRLK1L1 homeologs were induced. Fusarium graminearum and Claviceps purpurea inoculation induces homeologs of CrRLK1L-6 and -7. The analysis of cis-acting elements in the promoter regions identified elements crucial for plant growth and developmental processes. This comprehensive genome-wide analysis and expression study provides valuable insights into the essential functions of CrRLK1L members in wheat.
Publication link
https://doi.org/10.3389/fpls.2024.1345774
URI
https://d8.irins.org/handle/IITG2025/29084
Subjects
abiotic stress | biotic stress | CrRLK1L | gene expression | plant reproduction
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify