Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Temporal Binding in Multisensory and Motor-Sensory Contexts: Toward a Unified Model
 
  • Details

Temporal Binding in Multisensory and Motor-Sensory Contexts: Toward a Unified Model

Source
Frontiers in Human Neuroscience
Date Issued
2021-03-25
Author(s)
Jagini, Kishore Kumar
DOI
10.3389/fnhum.2021.629437
Volume
15
Abstract
Our senses receive a manifold of sensory signals at any given moment in our daily lives. For a coherent and unified representation of information and precise motor control, our brain needs to temporally bind the signals emanating from a common causal event and segregate others. Traditionally, different mechanisms were proposed for the temporal binding phenomenon in multisensory and motor-sensory contexts. This paper reviews the literature on the temporal binding phenomenon in both multisensory and motor-sensory contexts and suggests future research directions for advancing the field. Moreover, by critically evaluating the recent literature, this paper suggests that common computational principles are responsible for the temporal binding in multisensory and motor-sensory contexts. These computational principles are grounded in the Bayesian framework of uncertainty reduction rooted in the Helmholtzian idea of unconscious causal inference.
Publication link
https://doi.org/10.3389/fnhum.2021.629437
URI
https://d8.irins.org/handle/IITG2025/25501
Subjects
Bayesian models | causal inference | motor-sensory | multisensory | precision | temporal binding
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify