Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A hybrid CPU-Graphics Processing Unit (GPU) approach for computationally efficient simulation-optimization
 
  • Details

A hybrid CPU-Graphics Processing Unit (GPU) approach for computationally efficient simulation-optimization

Source
Computers and Chemical Engineering
ISSN
00981354
Date Issued
2016-04-06
Author(s)
Lau, Mai Chan
Srinivasan, Rajagopalan
DOI
10.1016/j.compchemeng.2016.01.001
Volume
87
Abstract
Simulation-optimization (Sim-Opt) is a widely used optimization technique that enables the use of simulation model so as naturally describe system complexity and stochastics. A key barrier to its broader adoption is the high computational cost associated with simulation that often limits its practicability. In this paper, we propose the use of GPU parallel computing, to enhance the computational efficiency of Sim-Opt. The main objective of this work is to develop a systematic framework that can be used to construct an efficient hybrid CPU-GPU program. The optimization of a process monitoring model using a Genetic Algorithm is used as a case study to illustrate the proposed approach. Our results show an over 100× acceleration of computation time by the developed hybrid program in comparison to a traditional CPU-based approach.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/21918
Subjects
Genetic Algorithm | Parallel computing | PCA | Sim-Opt | Tennessee Eastman challenge process
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify