Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Almost-global tracking for a rigid body with internal rotors
 
  • Details

Almost-global tracking for a rigid body with internal rotors

Date Issued
2017-03-01
Author(s)
Nayak, Aradhana
Banavar, Ravi
Maithripala, D. H. S.
Abstract
Almost-global orientation trajectory tracking for a rigid body with external actuation has been well studied in the literature, and in the geometric setting as well. The tracking control law relies on the fact that a rigid body is a simple mechanical system (SMS) on the 3?dimensional group of special orthogonal matrices. However, the problem of designing feedback control laws for tracking using internal actuation mechanisms, like rotors or control moment gyros, has received lesser attention from a geometric point of view. An internally actuated rigid body is not a simple mechanical system, and the phase-space here evolves on the level set of a momentum map. In this note, we propose a novel proportional integral derivative (PID) control law for a rigid body with 3 internal rotors, that achieves tracking of feasible trajectories from almost all initial conditions.
URI
http://arxiv.org/abs/1703.07839
https://d8.irins.org/handle/IITG2025/19923
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify