Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. DeepObjStyle: Deep object-based photo style transfer
 
  • Details

DeepObjStyle: Deep object-based photo style transfer

Source
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN
21607508
Date Issued
2021-06-01
Author(s)
Mastan, Indra Deep
Raman, Shanmuganathan  
DOI
10.1109/CVPRW53098.2021.00080
Abstract
One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input images (style and content). An efficient strategy would be to define an object map between the objects of the style and the content images. However, such a mapping is not well established when there are semantic objects of different types and numbers in the style and the content images. It also leads to content mismatch in the style transfer output, which could reduce the visual quality of the results. We propose an object-based style transfer approach, called DeepObjStyle, for the style supervision in the training data-independent framework. DeepObjStyle preserves the semantics of the objects and achieves better style transfer in the challenging scenario when the style and the content images have a mismatch of image features. We also perform style transfer of images containing a word cloud to demonstrate that DeepObjStyle enables an appropriate image features supervision. We validate the results using quantitative comparisons and user studies.
Publication link
http://export.arxiv.org/pdf/2012.06498
URI
https://d8.irins.org/handle/IITG2025/25407
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify