Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Towards subject independent continuous sign language recognition: A segment and merge approach
 
  • Details

Towards subject independent continuous sign language recognition: A segment and merge approach

Source
Pattern Recognition
Date Issued
2014-03-01
Author(s)
Kong, W. W.
Ranganath, Surendra
DOI
10.1016/j.patcog.2013.09.014
Volume
Vol 47
Issue
No. 3
Abstract
This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer for sign recognition. The continuously signed sentences are first segmented, and the sub-segments are labeled SIGN or ME (movement epenthesis) by a Bayesian network (BN) which fuses the outputs of independent CRF and support vector machine (SVM) classifiers. The sub-segments labeled as ME are discarded and the remaining SIGN sub-segments are merged and recognized by the two-layer CRF classifier; for this we have proposed a new algorithm based on the semi-Markov CRF decoding scheme. With eight signers, we obtained a recall rate of 95.7% and a precision of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and a precision of 89.9% for unseen signers.
Unpaywall
Sherpa Url
https://v2.sherpa.ac.uk/id/publication/4665
URI
https://d8.irins.org/handle/IITG2025/30097
Subjects
Hidden Markov model
Support vector machine
Bayesian network
Gesture recognition
Semi markov CRF
Sign language recognition
Signer independence
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify