Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. The relationship of the Gaussian curvature with the curvature of a Cowen-Douglas operator
 
  • Details

The relationship of the Gaussian curvature with the curvature of a Cowen-Douglas operator

Source
arXiv
Date Issued
2022-02-01
Author(s)
Ghara, Soumitra
Misra, Gadadhar
Abstract
It has been recently shown that if K is a sesqui-analytic scalar valued non-negative definite kernel on a domain ? in Cm, then the function (K2?i?�jlogK)mi,j=1, is also a non-negative definite kernel on ?. In this paper, we discuss two consequences of this result. The first one strengthens the curvature inequality for operators in the Cowen-Douglas class B1(?) while the second one gives a relationship of the reproducing kernel of a submodule of certain Hilbert modules with the curvature of the associated quotient module.
URI
http://arxiv.org/abs/2202.02402
https://d8.irins.org/handle/IITG2025/20087
Subjects
Gaussian curvature
Cowen-Douglas operator
Sesqui-analytic scalar
Hilbert modules
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify