Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Exploring Catechol Binding to Laccase with Insights into Enzyme Dynamics for Biosensing Applications
 
  • Details

Exploring Catechol Binding to Laccase with Insights into Enzyme Dynamics for Biosensing Applications

Source
Journal of Physical Chemistry B
ISSN
15206106
Date Issued
2025-04-17
Author(s)
Biswas, Anushka
Radhakrishna, Mithun  
DOI
10.1021/acs.jpcb.4c08556
Volume
129
Issue
15
Abstract
There is growing interest in using enzymatic sensors and bioreactors for detecting and removing toxic compounds. Phenolic pollutants like catechol are a major concern, and laccase, a versatile oxidase, has been widely employed for catechol degradation due to its strong binding affinity. In this study, we reconstruct the binding mechanism of catechol to laccase from the white-rot fungus Trametes versicolor using molecular dynamics simulations, free-energy calculations, Markov state modeling (MSM), and transition path theory (TPT). Our approach identifies five distinct macrostates, offering atomic-level insights into the structural and energetic landscape of the laccase-catechol interaction. Critical transition states and intermediates were characterized, emphasizing the role of the active site loop (A161-F162-P163-L164) and a gate mechanism involving neighboring residues. TPT analysis further quantified transitions among macrostates, revealing two dominant pathways that guide catechol from the unbound state to the active site through sequential and cooperative conformational changes.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28174
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify