Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Electroencephalography (EEG) based cognitive measures for evaluating the effectiveness of operator training
 
  • Details

Electroencephalography (EEG) based cognitive measures for evaluating the effectiveness of operator training

Journal
Process Safety and Environmental Protection
ISSN
09575820
Date Issued
2021-06-01
Author(s)
Iqbal, Mohd Umair
Shahab, Mohammed Aatif
Choudhary, Mahindra
Srinivasan, Babji
Srinivasan, Rajagopalan
DOI
10.1016/j.psep.2021.03.050
Abstract
Process industries rely on effective decision-making by human operators to ensure safety. Control room operators acquire various inputs from the DCS, interpret them, make a prognosis, and respond through appropriate control actions. In order to perform these effectively, the operator needs to have appropriate mental models of the process. Poor mental models would increase the operator's cognitive workload and make them prone to errors. Traditionally, operator training systems are used to help operators learn appropriate mental models. However, performance assessment metrics used during training do not explicitly account for their cognitive workload while performing a task. In this work, we demonstrate that this leads to an incorrect assessment of operators’ abilities. We propose an Electroencephalography (EEG) power spectral density-based metric that can quantify the cognitive workload and provide detailed insight into the evolution of the operator's mental models during training. To demonstrate its utility, we have conducted training experiments with ten participants performing 438 tasks. Statistical studies reveal that the proposed metric can quantify the cognitive workload and therefore be used to assess operator training accurately.
Volume
150
Unpaywall
Subjects

Clustering | Cognitiv...

Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your Institution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify