Dubey, S.S.DubeyBrowder, T. E.T. E.BrowderKohani, S.S.KohaniMandal, R.R.MandalSibidanov, A.A.SibidanovSinha, R.R.SinhaVahsen, S. E.S. E.Vahsen2025-08-312025-08-312024-05-0610.1051/epjconf/2024295090242-s2.0-85212201281https://d8.irins.org/handle/IITG2025/28918We report the status of a neural network regression model trained to extract new physics (NP) parameters in Monte Carlo (MC) simulation data. We utilize a new EvtGen NP MC generator to generate B → K<sup>∗0</sup>µ<sup>+</sup>µ<sup>−</sup> events according to the deviation of the Wilson Coefficient C<inf>9</inf> from its SM value, δC<inf>9</inf>. We train a three-dimensional ResNet regression model, using images built from the angular observables and the invariant mass of the di-muon system, to extract values of δC<inf>9</inf> directly from the MC data samples. This work is intended for future analyses at the Belle II experiment but may also find applicability at other experiments.trueMachine Learning for New Physics Searches in B → K∗0µ+µ− DecaysConference Paperhttps://doi.org/10.1051/epjconf/2024295090242100014X6 May 2024009024cpConference Proceeding0