Mehta, RanjanaRanjanaMehtaSaha, JoydipJoydipSahaSengupta, IndranathIndranathSengupta2025-08-312025-08-312024-06-0110.1007/s13226-023-00400-72-s2.0-85151144149https://d8.irins.org/handle/IITG2025/26426We show that the minimal number of generators and the Cohen-Macaulay type of a family of numerical semigroups generated by concatenation of arithmetic sequences is unbounded.false13P10 | Apéry set | Betti numbers | Cohen-Macaulay type | Frobenius number | Monomial curves | Numerical semigroups | Primary 13C40 | Pseudo-Frobenius setUnboundedness of the first Betti number and the last Betti number of numerical semigroups generated by concatenationArticle09757465649-662June 20240arJournal0WOS:000958600600001