Jaiswal, AnjaliAnjaliJaiswalTyagi, JagmohanJagmohanTyagi2025-08-312025-08-312024-02-0110.1016/j.nonrwa.2023.1039852-s2.0-85168554329https://d8.irins.org/handle/IITG2025/26452A parabolic–elliptic Keller–Segel system u<inf>t</inf>=Δu−χ∇⋅(uf(|∇v|)∇v),0=Δv−M+u,with homogeneous Neumann boundary condition is considered in a radially symmetric domain Ω=B<inf>R</inf>(0)⊂R<sup>N</sup>(N≥3), where [Formula presented] and B<inf>R</inf>(0) is a N-dimensional ball of radius R>0. We assert that under a condition on the initial data, radial weak solutions blow-up in finite time when [Formula presented]falseChemotaxis | Degenerate flux | Finite time blow-upFinite time blow-up in a parabolic–elliptic Keller–Segel system with flux dependent chemotactic coefficientArticleFebruary 20247103985arJournal6WOS:001075990500001