Guin, SatyajitSatyajitGuinSaurabh, BipulBipulSaurabh2025-08-312025-08-312023-03-0110.1016/j.geomphys.2022.1047482-s2.0-85146186797https://d8.irins.org/handle/IITG2025/26870Let q=|q|e<sup>iπθ</sup> be a nonzero complex number such that |q|≠1 and consider the compact quantum group U<inf>q</inf>(2). For θ∉Q∖{0,1}, we obtain the K-theory of the underlying C<sup>⁎</sup>-algebra C(U<inf>q</inf>(2)). We construct a spectral triple on U<inf>q</inf>(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4<sup>+</sup>-summable, non-degenerate, and the Dirac operator acts on two copies of the L<sup>2</sup>-space of U<inf>q</inf>(2). The K-homology class of the associated Fredholm module is shown to be nontrivial.falseCompact quantum group | Equivariance | Quantum unitary group | Spectral tripleEquivariant spectral triple for the quantum group Uq(2) for complex deformation parametersArticleMarch 20232104748arJournal1WOS:000923705500001