Bhardwaj, Om PrakashOm PrakashBhardwajSengupta, IndranathIndranathSengupta2025-08-312025-08-312024-06-0110.1216/rmj.2024.54.6892-s2.0-85200255114https://d8.irins.org/handle/IITG2025/28883Let n<inf>0</inf>, n<inf>1</inf>, . . ., n<inf>p</inf> be a sequence of positive integers such that n<inf>0</inf> <n<inf>1</inf> <· · ·<n<inf>p</inf>, gcd(n<inf>0</inf>, n<inf>1</inf>, . . ., n<inf>p</inf>)=1. Let S = (0, n<inf>p</inf>), (n<inf>0</inf>, n<inf>p</inf> − n<inf>0</inf>), . . ., (n<inf>p</inf><inf>−1</inf>, n<inf>p</inf> − n<inf>p</inf><inf>−1</inf>), (n<inf>p</inf>, 0) be an affine semigroup in N<sup>2</sup>. The semigroup ring k[S] is the coordinate ring of the projective monomial curve in the projective space P<inf>k</inf><sup>p</sup><sup>+1</sup>, which is defined parametrically by x<inf>0</inf> = v<sup>np</sup>, x<inf>1</inf> = u<sup>n</sup><sup>0</sup> v<sup>np</sup><sup>−n0</sup>, . . ., x<inf>p</inf> = u<sup>np</sup><sup>−1</sup> v<sup>np</sup><sup>−np−1</sup>, x<inf>p</inf><inf>+1</inf> = u<sup>np</sup>. In this article, we consider the case when n<inf>0</inf>, n<inf>1</inf>, . . ., n<inf>p</inf> forms an arithmetic sequence, and give an explicit set of minimal generators for the derivation module Der<inf>k</inf>(k[S]). Further, we give an explicit formula for the Hilbert–Kunz multiplicity of the coordinate ring of a projective monomial curve.falseaffine semigroup | derivation module | Hilbert–Kunz multiplicity | numerical semigroup | semigroup ringDERIVATION MODULE AND THE HILBERT–KUNZ MULTIPLICITY OF THE COORDINATE RING OF A PROJECTIVE MONOMIAL CURVEArticle19453795689-701June 20240arJournal0WOS:001281910300003