Aoki, T.T.AokiSreekantham, R.R.SreekanthamSahoo, B. K.B. K.SahooArora, BindiyaBindiyaAroraKastberg, A.A.KastbergSato, T.T.SatoIkeda, H.H.IkedaOkamoto, N.N.OkamotoTorii, Y.Y.ToriiHayamizu, T.T.HayamizuNakamura, K.K.NakamuraNagase, S.S.NagaseOhtsuka, M.M.OhtsukaNagahama, H.H.NagahamaOzawa, N.N.OzawaSato, M.M.SatoNakashita, T.T.NakashitaYamane, K.K.YamaneTanaka, K. S.K. S.TanakaHarada, K.K.HaradaKawamura, H.H.KawamuraInoue, T.T.InoueUchiyama, A.A.UchiyamaHatakeyama, A.A.HatakeyamaTakamine, A.A.TakamineUeno, H.H.UenoIchikawa, Y.Y.IchikawaMatsuda, Y.Y.MatsudaHaba, H.H.HabaSakemi, Y.Y.Sakemi2025-08-312025-08-312021-10-0110.1088/2058-9565/ac1b6a2-s2.0-85115275650https://d8.irins.org/handle/IITG2025/25290We propose a method to measure the electron electric dipole moment (eEDM) using ultracold entangled francium (Fr) atoms trapped in an optical lattice, yielding an uncertainty below the standard quantum limit. Among the alkali atoms, Fr offers the largest enhancement factor to the eEDM. With a Fr based experiment, quantum sensing using quantum entangled states could enable a search for the eEDM at a level below 10-30 ecm. We estimate statistical and systematic errors attached to the proposed measurement scheme based on this quantum sensing technique. A successful quantum sensing of the eEDM could enable the exploration of new physics beyond the standard model of particle physics.trueatom interferometry | electron electric dipole moment | laser cooling | quantum entanglement | quantum sensing | spin squeezingQuantum sensing of the electron electric dipole moment using ultracold entangled Fr atomsArticlehttps://doi.org/10.1088/2058-9565/ac1b6a20589565October 20219044008arJournal10