Mahatab, KamalakshyaKamalakshyaMahatabPańkowski, ŁukaszŁukaszPańkowskiVatwani, AkshaaAkshaaVatwani2025-08-312025-08-312022-10-0110.1007/s00209-022-03089-22-s2.0-85136177665https://d8.irins.org/handle/IITG2025/25909We consider L-functions L<inf>1</inf>, … , L<inf>k</inf> from the Selberg class which have polynomial Euler product and satisfy Selberg’s orthonormality condition. We show that on every vertical line s= σ+ it with σ∈ (1 / 2 , 1) , these L-functions simultaneously take large values of size exp(c(logt)1-σloglogt) inside a small neighborhood. Our method extends to σ= 1 unconditionally, and to σ= 1 / 2 on the generalized Riemann hypothesis. We also obtain similar joint omega results for arguments of the given L-functions.falseJoint extreme values of L-functionsArticle143218231177-1190October 20223arJournal3WOS:000841043300004