The Inefficiency of Language Models in Scholarly Retrieval: An Experimental Walk-through
Source
Proceedings of the Annual Meeting of the Association for Computational Linguistics
Author(s)
S., Singh, Shruti
M., Singh, Mayank
Editor(s)
Muresan, S.
Nakov, P.
Villavicencio, A.
Abstract
Language models are increasingly becoming popular in AI-powered scientific IR systems. This paper evaluates popular scientific language models in handling (i) short-query texts and (ii) textual neighbors. Our experiments showcase the inability to retrieve relevant documents for a short-query text even under the most relaxed conditions. Additionally, we leverage textual neighbors, generated by small perturbations to the original text, to demonstrate that not all perturbations lead to close neighbors in the embedding space. Further, an exhaustive categorization yields several classes of orthographically and semantically related, partially related and completely unrelated neighbors. Retrieval performance turns out to be more influenced by the surface form rather than the semantics of the text. � 2025 Elsevier B.V., All rights reserved.
Keywords
Computational linguistics
Information retrieval
Embeddings
Language model
Relaxed conditions
Relevant documents
Retrieval performance
Scientific language
Small perturbations
Surface forms
Semantics
