Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Hydrogel-based inks for extrusion 3D printing: A rheological viewpoint
 
  • Details

Hydrogel-based inks for extrusion 3D printing: A rheological viewpoint

Source
Current Opinion in Colloid and Interface Science
ISSN
13590294
Date Issued
2025-06-01
Author(s)
Thareja, Prachi  
Swarupa, Sanchari
Ahmad, Siraj
Jinugu, Manasi Esther
DOI
10.1016/j.cocis.2025.101918
Volume
77
Abstract
Extrusion 3D printing has achieved significant progress, emerging as one of the most important 3D printing methods for designing biologically relevant organs or tissue substitutes by bioprinting cell-laden inks. Swollen polymeric networks, or hydrogels, have emerged as the preferred biomaterial for fabricating cell-encapsulated inks appropriate for layer-by-layer extrusion through nozzles. The design aspects of the hydrogels play a crucial role in determining the flow behavior of these inks. The review first overviews the fundamentals of rheological measurements in extrusion-based 3D printing, followed by hydrogel ink design approaches, and their implications on the rheological properties. We also discuss the effect of cell density on rheology and 3D bioprinting outcomes. We identify the existing challenges in the field of extrusion bioprinting and discuss future directions to address them.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/28104
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify