Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Polyocollection ideals and primary decomposition of polyomino ideals
 
  • Details

Polyocollection ideals and primary decomposition of polyomino ideals

Source
Journal of Algebra
ISSN
00218693
Date Issued
2024-03-01
Author(s)
Cisto, Carmelo
Navarra, Francesco
Veer, Dharm
DOI
10.1016/j.jalgebra.2023.11.024
Volume
641
Abstract
In this article, we study the primary decomposition of some binomial ideals. In particular, we introduce the concept of polyocollection, a combinatorial object that generalizes the definitions of collection of cells and polyomino, that can be used to compute a primary decomposition of non-prime polyomino ideals. Furthermore, we give a description of the minimal primary decomposition of non-prime closed path polyominoes. In particular, for such a class of polyominoes, we characterize the set of all zig-zag walks and show that the minimal prime ideals have a very nice combinatorial description.
Publication link
https://doi.org/10.1016/j.jalgebra.2023.11.024
URI
https://d8.irins.org/handle/IITG2025/26436
Subjects
Polyominoes | Primary decomposition | Zig-zag walk
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify