Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Underdetermined DOA Estimation Using Arbitrary Planar Arrays via Coarray Manifold Separation
 
  • Details

Underdetermined DOA Estimation Using Arbitrary Planar Arrays via Coarray Manifold Separation

Source
IEEE Transactions on Vehicular Technology
ISSN
00189545
Date Issued
2022-11-01
Author(s)
Yadav, Shekhar Kumar
George, Nithin V.  
DOI
10.1109/TVT.2022.3194409
Volume
71
Issue
11
Abstract
Conventional direction-of-arrival (DOA) estimation algorithms like MUSIC only allow localization of fewer number of sources than the number of physical sensors. In this paper, underdetermined azimuth localization (localizing more sources than the number of sensors) using arbitrary planar arrays has been proposed, using only second-order statistics of the received data. To achieve this, we utilize the difference coarray of the actual array and express the elements of the array covariance matrix as the signal received by the virtual sensors of the coarray. We explore the structure and geometry of the difference coarray of an N-element planar array and show that the coarray can provide an increased degree-of-freedom (DOF) of O(N2) which enables underdetermined localization. Then, we extend the manifold separation (MS) technique to the coarray to express the coarray steering matrix in terms of a Vandermonde structured matrix by designing a signal independent coarray characteristic matrix. As the signal model of a coarray is a single snapshot model, the Vandermonde structure enables us to perform a spatial smoothing type operation to restore the rank of the coarray covariance matrix. This allows us to propose a novel subspace-based algorithm, which we call the coarrayMS-MUSIC, to perform underdetermined source localization using arbitrary planar arrays. We have also introduced the polynomial rooting version of our algorithm called the coarrayMS-rootMUSIC. Finally, we have conducted extensive numerical simulations to verify the effectiveness and usefulness of the proposed methods.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25877
Subjects
difference co- array | DOA estimation | manifold separation | MUSIC | Planar arrays | root-MUSIC
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify