Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Anomaly detection with convolutional Graph Neural Networks
 
  • Details

Anomaly detection with convolutional Graph Neural Networks

Source
Journal of High Energy Physics
Date Issued
2021-08-01
Author(s)
Atkinson, Oliver
Bhardwaj, Akanksha
Englert, Christoph
Ngairangbam, Vishal S.
Spannowsky, Michael
DOI
10.1007/JHEP08(2021)080
Volume
2021
Issue
8
Abstract
We devise an autoencoder based strategy to facilitate anomaly detection for boosted jets, employing Graph Neural Networks (GNNs) to do so. To overcome known limitations of GNN autoencoders, we design a symmetric decoder capable of simultaneously reconstructing edge features and node features. Focusing on latent space based discriminators, we find that such setups provide a promising avenue to isolate new physics and competing SM signatures from sensitivity-limiting QCD jet contributions. We demonstrate the flexibility and broad applicability of this approach using examples of W bosons, top quarks, and exotic hadronically-decaying exotic scalar bosons.
Publication link
https://link.springer.com/content/pdf/10.1007/JHEP08(2021)080.pdf
URI
https://d8.irins.org/handle/IITG2025/25358
Subjects
Jets
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify