Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Stochastic Mechanisms of Cell-Size Regulation in Bacteria
 
  • Details

Stochastic Mechanisms of Cell-Size Regulation in Bacteria

Source
Journal of Physical Chemistry Letters
Date Issued
2020-10-15
Author(s)
Teimouri, Hamid
Mukherjee, Rupsha
Kolomeisky, Anatoly B.
DOI
10.1021/acs.jpclett.0c02627
Volume
11
Issue
20
Abstract
How bacteria are able to maintain their sizes remains an open question. It is believed that cells have narrow distributions of sizes as a consequence of a homeostasis that allows bacteria to function at the optimal conditions. Several phenomenological approaches to explain these observations have been presented, but the microscopic origins of the cell-size regulation are still not understood. Here, we propose a new stochastic approach to investigate the molecular mechanisms of maintaining the cell sizes in bacteria. It is argued that the cell-size regulation is a result of coupling of two stochastic processes, cell growth and division, which eliminates the need for introducing the thresholds. Dynamic properties of the system are explicitly evaluated, and it is shown that the model is consistent with the experimentally supported adder principle of the cell-size regulation. In addition, theoretical predictions agree with experimental observations on E. coli bacteria. Theoretical analysis clarifies some important features of bacterial cell growth.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23965
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify