Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Fully coupled multi-physics nonlinear analysis of structural space frames subjected to fire using the direct stiffness method
 
  • Details

Fully coupled multi-physics nonlinear analysis of structural space frames subjected to fire using the direct stiffness method

Source
Advances in Structural Engineering
ISSN
13694332
Date Issued
2019-04-01
Author(s)
Prakash, P. Ravi
Srivastava, Gaurav
DOI
10.1177/1369433218810641
Volume
22
Issue
6
Abstract
This article develops a fully coupled hydro-thermo-mechanical formulation based on the direct stiffness method for analysis of steel and reinforced concrete structural space frames. The superiority of the developed formulation lies in developing the direct stiffness method for fire analysis, which enables use of a much coarser spatial mesh when compared to existing fire analysis frameworks. Effects of temperature-dependent material properties, damage due to fire and pore pressure, nonlinear thermal gradients, and large deformations of structural members are directly integrated into the stability and bowing functions in the construction of the member stiffness matrix. This alleviates the need to perform element-level numerical quadrature, typically required by all existing finite element–based approaches. Full coupling between the pore pressure, thermal and mechanical solvers is considered through a two-level spatial discretization strategy with a staggered scheme for the numerical solution procedure. Five numerical examples are presented to demonstrate the accuracy and efficacy of the developed formulation in analysis of steel and reinforced concrete structural members and frames.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23318
Subjects
direct stiffness method | high-strength concrete | hydro-thermo-mechanical analysis | normal-strength concrete | steel structures
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify