Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Zeros of combinations of the Riemann Ξ-function and the confluent hypergeometric function on bounded vertical shifts
 
  • Details

Zeros of combinations of the Riemann Ξ-function and the confluent hypergeometric function on bounded vertical shifts

Source
Journal of Mathematical Analysis and Applications
ISSN
0022247X
Date Issued
2018-10-01
Author(s)
Dixit, Atul  
Kumar, Rahul
Maji, Bibekananda
Zaharescu, Alexandru
DOI
10.1016/j.jmaa.2018.05.072
Volume
466
Issue
1
Abstract
In 1914, Hardy proved that infinitely many non-trivial zeros of the Riemann zeta function lie on the critical line using the transformation formula of the Jacobi theta function. Recently the first author obtained an integral representation involving the Riemann Ξ-function and the confluent hypergeometric function linked to the general theta transformation. Using this result, we show that a series consisting of bounded vertical shifts of a product of the Riemann Ξ-function and the real part of a confluent hypergeometric function has infinitely many zeros on the critical line, thereby generalizing a previous result due to the first and the last authors along with Roy and Robles. The latter itself is a generalization of Hardy's theorem.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22750
Subjects
Bounded vertical shifts | Confluent hypergeometric function | Riemann zeta function | Theta transformation | Zeros
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify