Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal
 
  • Details

CTAB modified large surface area nanoporous geopolymer with high adsorption capacity for copper ion removal

Source
Applied Clay Science
ISSN
01691317
Date Issued
2017-12-15
Author(s)
Singhal, Aditi
Gangwar, Bhanu P.
Gayathry, J. M.
DOI
10.1016/j.clay.2017.09.013
Volume
150
Abstract
Nanoporous geopolymer was synthesized with and without using Cetyl trimethylammonium bromide (CTAB) by condensing the mixture of metakaolin and alkali solution at a fixed ratio at room temperature. The surface area of CTAB-geopolymer was found to be more (216 m<sup>2</sup>/g) as compared to without CTAB added geopolymer (137 m<sup>2</sup>/g). The experimental results verified that the geopolymer could adsorb copper ions completely at lower concentrations and partially at higher concentrations. Pseudo second order model fits well at all the concentration from 55 to 1700 ppm as the values of the correlation coefficient lies between 0.96 and 0.99. Intraparticle diffusion model at the concentration 55 ppm explains that there is only boundary layer diffusion (instantaneous) and after this step, all the Cu ions are exchanged by the nanoporous geopolymer. At 120 ppm, intraparticle diffusion model shows multilinearity. Different adsorption models - Langmuir, Freundlich and Tempkin were also tested to evaluate the most appropriate model and it was found that adsorption follows Langmuir model. The adsorption capacity and pseudo second order rate constant is estimated to be 1.65 meq/g which is significantly higher than the fly ash based nonporous geopolymer.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/22336
Subjects
Adsorption | Geopolymer | Kinetics | Nanoporous
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify