Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Electromagnetic instability induced by neutrino interaction
 
  • Details

Electromagnetic instability induced by neutrino interaction

Source
International Journal of Modern Physics D
ISSN
02182718
Date Issued
2017-05-01
Author(s)
Bhatt, Jitesh R.
George, Manu
DOI
10.1142/S0218271817500523
Volume
26
Issue
6
Abstract
We consider the generation and evolution of magnetic field in a primordial plasma at temperature T ≤ 1MeV in the presence of asymmetric neutrino background, i.e. the number densities of right-handed and left-handed neutrinos are not the same. Semi-classical equations of motion of a charged fermion are derived using the effective low-energy Lagrangian. We show that the spin degree of freedom of the charged fermion couples with the neutrino background. Using this kinetic equation, we study the collective modes of the plasma. We find that there exist an unstable mode. This instability is closely related with the instability induced by chiral-anomaly in high temperature T ≥ 80TeV plasma where right and left-handed electrons are out of equilibrium. We find that at the temperatures below the neutrino decoupling this instability can produce magnetic field in the universe. We discuss cosmological implications of the results.
Publication link
https://arxiv.org/pdf/1602.06884
URI
https://d8.irins.org/handle/IITG2025/21773
Subjects
electromagnetic instability | neutrino interaction | Primordial plasma
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify