Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Tuning Cationic Micelle Properties with an Antioxidant Additive: A Molecular Perspective
 
  • Details

Tuning Cationic Micelle Properties with an Antioxidant Additive: A Molecular Perspective

Source
Langmuir
ISSN
07437463
Date Issued
2021-04-20
Author(s)
Kumar, Vinod
Sai, Geetha M.
Verma, Rajni
Mitchell-Koch, Katie R.
Ray, Debes
Aswal, Vinod Kumar
Thareja, Prachi  
Kuperkar, Ketan
Bahadur, Pratap
DOI
10.1021/acs.langmuir.1c00290
Volume
37
Issue
15
Abstract
In this work, we characterize the micellization and morphology transition induced in aqueous cetyltrimethylammonium bromide (CTAB) solution by the addition of the antioxidant propyl gallate (PG) using tensiometry, rheology, and small-angle neutron scattering (SANS) techniques combined with the molecular dynamics (MD) simulation approach. The adsorption of CTAB at the air-water interface in the presence of varying [PG] revealed a progressive decrease in the critical micelle concentration (CMC), while the changes in different interfacial parameters indicated enhancement of the hydrophobicity induced by PG in the CTAB micellar system. The dynamic rheology behavior indicated an increase in the flow viscosity (η) as a function of [PG]. Moreover, the rheological components (storage modulus, G′, and loss modulus, G″) depicted the viscoelastic features. SANS measurements depicted the existence of ellipsoidal micelles with varying sizes and aggregation number (Nagg) as a function of [PG] and temperature. Computational simulation performed using density functional theory (DFT) calculations and molecular dynamics (MD) provided an insight into the atomic composition of the examined system. The molecular electrostatic potential (MEP) analysis depicted a close proximity of CTAB, i.e., emphasized favorable interactions between the quaternary nitrogen of CTAB and the hydroxyl group of the PG monomer, further validated by the two-dimensional nuclear Overhauser enhancement spectroscopy (2D-NOESY), which showed the penetration of PG inside the CTAB micelles. In addition, various dynamic properties, viz., the radial distribution function (RDF), the radius of gyration (Rg), and solvent-accessible surface area (SASA), showed a significant microstructural evolution of the ellipsoidal micelles in the examined CTAB-PG system, where the changes in the micellar morphology with a more elongated hydrophobic chain and the increased Rg and SASA values indicated the notable intercalation of PG in the CTAB micelles.
Publication link
https://www.ncbi.nlm.nih.gov/pmc/articles/8895413
URI
https://d8.irins.org/handle/IITG2025/25475
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify