Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Transport coefficients in the Polyakov quark meson coupling model: A relaxation time approximation
 
  • Details

Transport coefficients in the Polyakov quark meson coupling model: A relaxation time approximation

Source
Physical Review D
ISSN
24700010
Date Issued
2018-01-01
Author(s)
Abhishek, Aman
Mishra, Hiranmaya
Ghosh, Sabyasachi
DOI
10.1103/PhysRevD.97.014005
Volume
97
Issue
1
Abstract
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosities, as well as thermal conductivity for hot and dense matter. The calculations are performed within the Polyakov quark meson model. The estimation of the transport coefficients is made using the Boltzmann kinetic equation within the relaxation time approximation. The energy-dependent relaxation time is estimated from meson-meson scattering, quark-meson scattering, and quark-quark scattering within the model. In our calculations, the shear viscosity to entropy ratio and the coefficient of thermal conductivity show a minimum at the critical temperature, while the ratio of bulk viscosity to entropy density exhibits a peak at this transition point. The effect of confinement modeled through a Polyakov loop potential plays an important role both below and above the critical temperature.
Publication link
http://link.aps.org/pdf/10.1103/PhysRevD.97.014005
URI
https://d8.irins.org/handle/IITG2025/22978
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify