Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. TLK1 as a therapeutic target in TMZ resistant glioblastoma using small molecule inhibitor
 
  • Details

TLK1 as a therapeutic target in TMZ resistant glioblastoma using small molecule inhibitor

Source
Scientific Reports
Date Issued
2025-12-01
Author(s)
Priya, Bhanu
Kirubakaran, Sivapriya  
DOI
10.1038/s41598-025-86599-3
Volume
15
Issue
1
Abstract
The acquired resistance to existing therapies poses a grave concern in achieving successful therapeutic outcomes. Temozolomide (TMZ), a widely used alkylating chemotherapeutic in Glioblastoma therapy, often encounters resistance, necessitating the investigation of the underlying mechanisms of TMZ-acquired resistance. To study TMZ resistance, a cell-based model system was generated by intermittently exposing glioblastoma cells to increasing concentrations and time of TMZ over six months. The survival response of cells at higher concentrations confirmed TMZ-resistant cells, which exhibited a phenotypic shift toward a mesenchymal-like state, with decreased epithelial traits, indicating mesenchymal-epithelial transition (MET). This transition likely facilitates the stabilization and clonal growth of TMZ-resistant cells. Subsequent analysis revealed elevated expression of TLK1, a DNA repair protein, thus reinforcing its potential involvement in mechanisms associated with acquired resistance. To explore the therapeutic aspect of TLK1 inhibition, we utilized an in-house developed TLK1 inhibitor, J54. The inhibition of TLK1 in TMZ-resistant cells enhanced cytotoxicity, indicating TLK1 as a potential target to combat TMZ resistance. Moreover, TLK1 inhibition reduced cell migration and invasion, implying its role in promoting metastasis. In conclusion, our study sheds light on the role of TLK1 in the context of TMZ resistance, highlighting its potential as a valuable target for therapeutic intervention.
Publication link
https://www.nature.com/articles/s41598-025-86599-3.pdf
URI
https://d8.irins.org/handle/IITG2025/27979
Subjects
Blood-brain-barrier | DNA damage response | Glioblastoma | Phenothiazine | Temozolomide | Tousled-like kinase-1
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify