Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters
 
  • Details

K -theory and equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters

Source
arXiv
Date Issued
2021-02-21
Author(s)
Guin, Satyajit
Saurabh, Bipul
Abstract
Let q=|q|ei??,??(?1,1], be a nonzero complex number such that |q|?1 and consider the compact quantum group Uq(2). For ??Q?{0,1}, we obtain the K-theory of the C?-algebra C(Uq(2)). Then, we produce a spectral triple on Uq(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4+-summable, non-degenerate, and the Dirac operator acts on two copies of the L2-space of Uq(2). The Chern character of the associated Fredholm module is shown to be nontrivial. At the end, we compute the spectral dimension of Uq(2).
URI
http://arxiv.org/abs/2102.11473
https://d8.irins.org/handle/IITG2025/20049
Subjects
Compact quantum group
Spectral triple
K-theory
Quantum unitary group
Equivariance
Spectral dimension
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify